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We present a helical coordinate system and illustrate its use in solving electrostatic problems due to
charge distribution on a double helix. It is shown that for systems with helical symmetry the resulting
expression provides the structural information in the solution in a transparent way, with a structure fac-
tor separated out displaying the proper symmetry. The expressions for vector operators and other in-
variants for this coordinate system are also presented. We believe that this method provides an elegant
description of physical systems possessing inherent helical structures.

PACS number(s): 87.15.—v, 36.20.—r, 41.20.Cv, 42.15.Gs

Recently we employed a helical coordinate system in
the investigation of electronic properties in graphitic tu-
bules that possess helical symmetry [1]. Since many
differential equations of mathematical physics have to be
solved under boundary conditions that demand the intro-
duction of the proper kind of curvilinear coordinates, we
believe that our coordinate system is useful in solving
other problems in systems with helical symmetry. The
purpose of this paper is to demonstrate that in addition
to solving problems of electronic structure of systems
confined to the cylindrical surface, as in graphitic tubules
[1], this coordinate system may also be used conveniently
to obtain the electrostatic fields produced by ions that are
located on a spiral, as in helical molecule. Because the
helical coordinate system defined by us is a nonorthogo-
nal curvilinear system, the expressions for vector opera-
tors of interest in this system are nontrivial. We present
expressions for vector operators and other invariants of
interest in the Appendix using the methods of tensor cal-
culus [2].

Recently the electric potential emanating from a DNA
macromolecule has been calculated using a cylindrical
coordinate system [3]. In that work the DNA molecule
was modeled as a helical charge distribution that was di-
vided into line charges, and the total contribution of all
the line charges to the potential were then summed up.
The higher order terms that reflect the helical structure
are then examined to determine the effective decay length
for the helical information in the local electric field.
Since the cylindrical coordinate system, that was used in
that calculation does not represent the correct symmetry
of the system under consideration, much of the structural
information is not explicitly present in their final results.
In the helical coordinate system the potential due to
charges distributed on a double helix may be calculated
directly, and the final expression contains the structural
information in a transparent fashion in terms of the com-
ponents in helical representation.

An alternative helical coordinate system was previous-
ly proposed by Waldron [4]. His system is similar to the
one proposed by us in that the pitch of the helix is fixed
but the pitch angle is allowed to vary as a function of the
radius. The three basis vectors of his coordinate system
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are always nonorthogonal. We choose a curvilinear coor-
dinate system that is orthogonal on the cylinder surface
with radius a, but nonorthogonal elsewhere.

The helical system (p,t,s) we choose in three-
dimensional space reduces to the two-dimensional one
previously considered by us on a cylindrical surface when
p=a [1], where a is the radius of the cylinder on which
the helical elements are situated. The detailed coordinate
transformation from the cylindrical system [p,0,z] to the
present system can be found in the Appendix. In the
present system we define the following relations for any
radius:

s=zsinB+abcosB ,

t=a0sinB—z cosf .

(1)

On the p=a surface, t =constant describes a helix with
pitch angle B and pitch p =2 7a tanf. For p+a, the s
direction follows a helix with the same pitch but with
pitch angle B’, where tanf’'=(a /p)tanf3. The angle B’
between the ¢ and —z directions, as shown in Fig. 1 and
proved in the Appendix, obeys tanf8’’ =(p/a)tan. Thus
the s direction is perpendicular to the ¢ direction only for
p=a. However, in the cylindrical representation a helix
is specified by a pair of displacements (h,a) on the p=a
surface given by z—z+h, representing the translation,
and 6—0-+a, the accompanying rotation, where
a=h /a tanf. Because the helical system exhibits a sym-
metry lower than the cylindrical symmetry, there are dis-
tinct features in the helical representation that are absent
in the cylindrical representation. For example, the cylin-
drical symmetry implies a periodicity of 27 in the angle
variable 8. However, for a system with helical symmetry,
the above periodicity in 6 does not generally hold. This
is due to the fact that the periodicity in the z direction of
a general helical structure need not correspond to one
pitch, i.e., the combined displacement z—z+p and
6— 0+27 need not reach a periodic site.

We illustrate the nature of the helical coordinate sur-
faces s =constant and ¢ =constant in Fig. 2 for p <4a.
The coordinate surfaces p =constant represent concentric
cylindrical surfaces. Examples of surfaces with ¢ =0 and
t =0.1074 are shown in Figs. 2(a) and 2(b), with defining
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FIG. 1. Charges distributed on a single helix (solid dots and
open circles indicate the charges situated on the front and the
back of the cylinder, respectively), and the coordinate systems
corresponding to the helical and cylindrical choices of represen-
tation.

parameters, pitch p =4a, radius @ =0.25 (8=32.48°) of
Eq. (1). The radial lines represent the directions along p
and the spiral lines represent curves with p=constant.
The tangent to the spiral at the point of intersection of
the spiral with the radical line that has a positive com-
ponent in the +z direction gives the orientation of 3 at
that point. Similarly the examples of surfaces with s =0
and s =0.1687 are given in Figs. 2(c) and 2(d), with the
same parameters as in Figs. 2(a) and 2(b). The radial lines
here also represent the directions along p and the spirals
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i
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FIG. 2. Coordinate lines of the helical coordinate system for
p<4a. We have chosen the parameters, pitch p =4a, radius
a =0.25, which correspond to $=32.48°. (a) and (b) represent
surfaces with £ =0 and ¢ =0.1074. (c) and (d) represent surfaces
with s =0 and s =0.1687. See text for a detailed explanation of
these surfaces.

represent cures with p=constant. But in these cases, the
tangent at the point of intersection of the spiral with the
radial line that has a positive component with the —z
direction gives the orientation of 7 at this point. Because
of this feature, the senses of the spirals in Figs. 2(c) and
2(d) are the opposite of those in Figs. 2(a) and 2(b). We

must point out that the unit vectors Sand 7 are mutually
perpendicular only for p=a; for p7*a, they have an angle
between them, as shown in Fig. 1. We also note that the
scales of z in the upper and lower panels of Fig. 2 are
different because the pitches of the s spiral and the ¢
spiral are not equal.

The fundamental periodicity requirement on the wave
function describing the helical system is

Y(p,t =2ma sinf,s +2ma cosf)=y(p,t =0,s)
foralls . (2)

Thus this helical system has the advantage of incorporat-
ing an already present helix and is more suitable for cer-
tain problems where helical structures exist. A detailed
description of the helical coordinate system may be found
in [5,6]

As an example we consider the electrostatic potential
¢(p,t,s) due to charges distributed on a double helix

—4a

Vip= 8(p—a)
2 N
Xy 3 q,,0(t—t,)8(s—s,—d,), (3)
v=1ln=—N
where the sum over v corresponds to the two helices, and
the sum over n represents the charges ¢,, on the vth
helix. The relative positions of the two helices are given
by t, =0, t,=ma sin3—2£ cosf, and the charge distribu-
tions on the helices are determined by d,=0,
d,=ma cosB+2¢sinB, and s,. 2§ is the offset distance
between two corresponding charges on the two helices
[3]. For charges with equal magnitude and separated by
equal distance 5 along a helix, we have gq,,, =a and s, =n5,
where n takes integer values from —N to N in steps of
unity. N =0 represents an infinitely long helix. The
left-hand side of Eq. (3) in the helical coordinate system is
given in Eq. (A21).
The solution to Eq. (3) is given by

2 N
dp,t,5)=3 3 Glp,ts;at,,s,+d,), 4)

v=ln=—N

where the Green function G(p,t,s;p’,t',s’) satisfies the
equation

—417a
gp

V2G(p,t,5;p'st'ys")= 8(p—p')8(t —t")8(s —s’) .

(5)

This Green function is obtained by employing the
method of separation of variables given in Morse and
Feshbach [7] as follows. We first find the solution of
V2¢(p,t,s )=0 with the expressions in Eq. (A21). Let
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é(p,t,s)=R(p)T(t)S(s),

. ) (6)
T(t)=e_'M’ , S(s)___.e—tMs ,
then we obtain
RH RI }\'2
—t—=—=+k?=0, (7)
R pR p2
where

A=a(M’sinB+ M cosf) ,
—AcosB+aM ®

=—M + M sinB=
cosf sinf3 a sinB

In Eq. (7) primes denote differentiation with respect to p.

The solution to Eq. (7) is, in general, of the form
R(p)=AI,(|klp)+BK,(|klp) . 9)

In the case where the medium is in 0<p < » with a
uniform dielectric constant € (both inside and outside the

|

0

Me

=9
é(p,t,s) g

I

v=ln=—N

Xexp | —i

=9

LY

—1

S [° dM 4(MMH M Mexp

=— o0

The structure factor H (M, L) in Eq. (11) is determined
by the charge distribution on the double helix

H(M,A)

& X o .| A—aM cosB
—vélnzNexp iM(ns+d,)+i 2 sinB t,
=H,(M,\)H,(M) , (12a)
where
H,(M,A)= [1+expl—i7vn' 1+—‘}1-§-
. 28
+iM sinB , (12b)
N
H,(M)= 3 exp(—iMsn)
n=—N
-1
= |gip PN DMs || Ms X (12¢)
2 2
Hon=2 3 slM—-zi_Ti ifN=o . (12d)
S j=— K

A—aM cosf
a sinf3

A—aM cosB

cylinder on which the helix lies), the boundary conditions
that exist when p approaches a from inside and from out-
side the cylinder determine the Green functions:

Glp,t,s3p,t',s")=—L [ [ ' '
(p,ts53p'st",s )= [ [ dM M’ 4 (M, M")
xe—iM(s—-s')—iM’(t—t')

XTI, ( |k|P< )Kx(|k|P>) .
(10)

In the above, I, (|k|p),K,(|k|p) are the modified Bessel
functions, and the p_,p, represent the smaller or the
greater of the pair p,p’. As described in [1], and accord-
ing to Eq. (2), A is an integer and represents the discrete
angular momentum in the cylindrical system when the M
and M’ represent the linear momenta along the s and ¢
directions. We therefore can also replace the integral
over M’ by a sum over A in Eq. (10). Equation (4) then
becomes

N o
s 3 dM A (M,A)exp[ —iM(s —n5—d,)]
A=—w ~®

I (lklp DK, (lklp5)

l(t—tv)

t—(iMs) | I, (|klp K, (klps ) . (11)

a sinf3

r

Note that in Eq. (12a) the two summations are separated
into two factors, H,(M,A),H,(M). The first factor con-
tains the summation over the number of helices and
H,(M,\)=1 for a single helix. The second factor H,(M)
represents the structure factor for a single helix and is in-
dependent of A. It has simple forms given in Egs. (12¢)
and (12d) for finite and infinite helices, respectively.

From the discontinuity in the derivative of the poten-
tial with respect to p as we approach p=a from inside
and outside, we have

dd(p<a) d¢lp>a)
dp dp

p=a
2 N
=4 s 3 s(t—1,)8(s—s,—d,), (13)
€ y=in=—N
and thus we obtain the coefficients in Eq. (11),
A(M,A)

1 1
kae [I;(Ikla)Kh(|k|a)—K&(|k|a)IA(|k|a)
=1, (14)
€

where the prime stands for the derivative of the modified



904 P.J. LIN-CHUNG AND A. K. RAJAGOPAL 52

Bessel functions. Note that the denominator within the
parenthesis is the Wronskian —A(7,(x),K,(x))=1/x.
These relations may be found in [7].

The solution obtained in Eq. (11) differs from that
given in [3] in that it is in terms of the helical coordi-
nates, and the summation over the charge distribution on
the double helix is separated into a characteristic struc-
ture factor, H(M,A). For simplicity we considered here
a uniform dielectric constant. p _,p, now represent the
inside and outside of the cylinder corresponding to the
smaller and the greater of p and a, respectively. Note
that the variable k is a function of A, and M and it

J

represents the component of linear momentum along the
z direction. The different dielectric materials involved in
the real DNA system can easily be incorporated through
appropriate boundary conditions. We shall not pursue
this point here.

From the solution in Eq. (11) and using Eq. (A20) we
obtain the associated electric field due to the charges dis-
tributed on the helices. Define

E=pE,+1E, +3E, (15)
and note that this defines the components with respect to
the unit basis vectors and not the covariant components,

_q4 ® .| A—aM cosf —iM 16
E,=—L Lzz_wf_deH(M,A)WAHkIp)exp vl e S (16)
where
|k|I5(|klp)K,(lkla) for p<a 1
= 7
Wikl =11k, (1kla K (1klp) for p>a , an
. 2] © w _
= | s [ am EM) | M2 | 2T cosB
TE P A= — oo — aSlnB
. .| A—aM cos
Xexp | —iMs —i ——G—SEB—_B t|I,(lklp K, (lklps) (18)
. 2 ® w _
E =2 |25 s [ amEMM) (o2 | 2T |2y
me | p? |\ e a sinf3
. .| A—aM cos
Xexp | —iMs —i ﬁ;—ﬁ t|1,1klp K, (klps) . (19)
—

Equation (17) displays the discontinuity of the E, com-
ponent of the electric field across p=a because of the
presence of the charge distribution on that surface. The
other two components are continuous across p=a.

The components of the electric fields in the cylindrical
coordinates in terms of those of the helical system can be
obtained using Egs. (A18) and (A7):

E,=E,,
E,sin, E_ cosf3
p=— B+ > , (20)
al, al,
—E,cos E sin,
g, = ZEwcosB | Eysing
al, al,

with the notations defined in the Appendix.

The actual computations of the terms involving the
Bessel functions in these formulas may be performed us-
ing the codes given by Press et al. [8]. An interesting
special case of the components of the electric field at the
central axis of the molecule can be evaluated analytically
from Egs. (16)—(19) and by using the known properties
of the Bessel functions [7].

Thus the following expressions for the various com-

ponents of the electric field along the central axis, defined
by p=0 and arbitrary 6,z, are found to be

E (5=0.8.2) q a sinBcos(60—u,,) 21a)
g = —_ ’ a
o\p=0,0,z e | = [a2+(z —a, sinB) P2
_ lq a sinBsin(0—u,,,)
Ey(p=0,0,z)= |= , (21b)
olp z) e | = [a2+(2_anvsinﬁ)2]3/2
(a,,sinB—z)sinf
E(p=0,6,2)= |% , lo)
2P z 3 % [a*+(a,,sinB—z)* ]2

where a,,=ns+d,—t,cotf and u,,=(n5+d,)cosB
+t,sinf are determined by the charge distribution on the

double helix.
Since in these molecules the radius a is much smaller

than the length of the molecule, we find from Eq. (21)
that the z component E,is the largest in magnitude. This
appears to be in conformity with an observation reported
recently on the fast motion of electrons through the
DNA molecules [9]. Note that since our formulas in-
volve the features of the structure of the DNA, their
dependence on the lengths and nature of DNA strands
are also obtained here explicitly.
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In summary, since we can separate the structure factor
in the above expressions for the potential and the electric
fields, it is easier to examine the structural information
using the present coordinate system than using the cylin-
drical system [3]. This approach may also be employed
in other contexts, such as helical wave guides [4], helical
optical beams [10], and helical magnetic fields [11]. In
general we note that the procedure developed here is a
useful method in studying system with inherent helical
symmetry.

This work was supported in part by the Office of Naval
Research.

APPENDIX: COORDINATE TRANSFORMATION
FROM CYLINDRICAL [p,6,z] TO HELICAL
(p,t,s) SYSTEMS AND EXPRESSIONS
FOR THE DIFFERENTIAL INVARIANTS
IN THE HELICAL SYSTEM

In a general nonorthogonal curvilinear coordinate sys-
tem, a position vector ¥ may be expressed in terms of its
contravariant components x with a fixed set of basis vec-
tors, €;, or its covariant components x; with the adjoint

set of basis vectors, €'. The expressions for the position

vector are
F= 3 xe= 3 x;¢ . (A1)
The differential line element in this system is
=J?-d?=gijdx idx 1, (A2)
where
8;j=¢€¢, (A3)

and g;; are the covariant components of the second-order
symmetric metric tensor of the system. The respective
contravariant components of vectors and tensors in cur-
vilinear systems are obtained from their covariant com-
ponents by

gijé)j:?i ’ g E zg gaj 1] ’ (A4)
where §;; is the usual Kronecker delta symbol, 1 for i =j
and O for i 7.

The above basis vectors and metric tensors are funda-
mental in defining a curvilinear coordinate system, as
they are employed in deriving the basic differential in-
variants and covariants of mathematical entities in such
systems.

In the following we use €;, x’, and 8ij (f,, %', and g;) to
represent the corresponding quantities in the cylindrical
(helical) coordinate system. A position vector 7 in the
helical coordinate system defined here and in the cylindri-
cal system is then given by

= 3xf'=3x'f=pf, +ifi+sf,
=3x¢'=3x'e =pe,+0ey+ze,
(AS)

The components x' are (p,0,z) in the cylindrical system
and the components X' are (p,t,s) in the helical system.
A detailed analysis of the cylindrical system may be
found in Morse and Feshbach [7].

The coordinate transformation between these two sys-
tems is represented by

fi=aje;, X'aj= (A6)
where
1 0 0
i sinf3
a/= |0 Y cosp (A7)
0 ———ch sinf

is the transformation matrix derived from Eq. (1) in the
text. The transformation of the second-order metric ten-
sor is

8 =a/0,8 > (A8B)
where
g; Ef,ﬁ . (A9)

Since in the cylindrical system we have €, ——p, €= p§

‘e’zfz for the basis vectors in terms of the unit vectors
ﬁ,g,? [7], we obtain from Egs. (A3) and (A4),
1 00 1 0 O
gs=10 p> 0|, g"=10 p2 0 (A10)
0 01 0 0 1

From Eq. (A8) we then obtain the corresponding tensor
in the helical system,

1 0 O
g.= 10 12 c?|, (A11)
0 c? 12
where
. 2
I2=cos’B+ psinB |-
a
2
2=sin?B+ P——°;’SB , (A12)
2
c¢2=sinf cosB Lz——l .
a
We also have
2
g=detlg,|=25 (A13)

The basis vectors f; are expressed in terms of the unit
vectors ﬁ,?,?based on Egs. (A9) and (A11)
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— A — S5
fo=p, fi=Lt,
P o (A14)
275 55_C
fi=Is, 51 L1,

Note that the 5, 7 are not orthogonal for p7a in the heli-
cal system, and the lengths of the basis vectors f Py fs are
1,1, respectively.

From Egs. (A6) and (A 14) we have

7= cosﬁpe-!-(smﬁ)z s? ,
(A15)
f= SlnBpe—(cosﬁ)z—l .

Thus the pitch angle B’ of the helix along s direction and
the angle B” shown in Fig. 1 for p7#a are determined
from

sinf = s1InB . cospr =S98 cosB ,

s t'

(A16)

i.e., tanB' = tanf .

2 |tanB, tang’= [%

B=pB" (?’l?) only when p=a.
The adjoint set of the basis vectors is determined from
similar relations given in Eq. (A4),

2 21
(= f 12 )= (e BHLLD)
p?

S S
I

(A17)

2

- a?l,
o= a—z(lzfs-—czf,)-— > —L (1 15—c%) .

'b

An arbitrary vector A in the helical system is decom-
posed into either its covariant components, contravariant
components, or the components with respect to the basis
vectors in the following form:

A=3 4f'=3 AF,=4,p+47+45. (A18)
i i
The various components are related by the equations

(A19)

With the above quantities defined for the helical coor-
dinate system, the fundamental differential invariants and
covariants, namely, the gradient and Laplacian of a sca-
lar field, the divergence and curl of a vector field are
readily derived. They are

vo=72L
ox'
2
59 45 al 11,8 ,98
P 2 e o
2
I
pf e —c2-§—+13;’t ¢, (A20)
p
1 9 ij O
Vip=—o — ‘/:"U——.
¢ Vg ox! 88 % ]¢
— |18 | 98 |, @& &
p 3 [P at?  9s?
+ |- 3 teosp 1
3 sinf3 cosfB 3 ¢, (A21)

—‘/§ ‘ A22
19 194 134 e
pop PP Tar T Tas
1 aZk BZJ —
curld = " Py — Py fit(ijk cyclic)
g
_a|[3F _2F s, (27, o7
P ot os Os p |
94, 94, | A
?P—_ 3 5| . (A23)

(ijk cyclic) means terms obtained by cyclic permutation
of i, j, k. In Egs. (A22) and (A23) the various forms of
the components of the same vector are defined by Eq.
(A19). 1t is interesting to note that in Eq. (A23) the co-
variant components of A are used to get the contravari-
ant components of curl 4.
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